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Abstract

Since the development on the V-2 in the 1930s, combustion instability has been a significant concern
for all rocket engine development programs. Combustion instability is generally characterized as oscilla-
tions in the combustion process, which can (and often do) couple to other aspects of the rocket motor
such as the fluid dynamics or the structural modes. Due to the large energy fluxes present in rocket
engines, if even a small fraction of the energy enters mechanical modes, it can result in destruction of
the rocket engine. Clearly the prediction of combustion instability is an important part of rocket engine
design. However due to the complexity of the processes involved, many simplifying assumptions are used
to make the problem tractable.

We assess five of these simplified combustion response models by comparison to experimental data.
All the models relied on user supplied coefficients. While, these coefficients had some relation to physical
parameters of the combustion process, it was no sufficient to be able to obtain reasonable a priori
predictions. We derived a model for combustion stability based on the quasi-one dimensional steady
(QSHOD) model, and the burn rate model of Lengelle et al for ammonium-perchlorate/binder propellants.
The purpose was to obtain a combustion response model that was a function of design level propellant
parameters (such as ammonium perchlorate loading and particle diameter) that the user can specify, and
‘universal’ coefficients for the propellant (such as binder decomposition Arrhenius coefficients) which the
user would not need to modify. Unfortunately, the newly derived model performed poorly in comparison
to experimental data and so is not fit for predictive capabilities.

At the lowest pressure the best performing model allowed for the effect of a process with a time lag
that is constant with respect to forcing frequency. This model predicted an additional peak (compared
to the other models) at a frequency inline with that predicted by Boggs layer frequency concept, which
is physically consistent with a constant time-lag approximation. We hypothesis that the combustion
pressure is sufficiently low that there is no longer a molten layer of ammonium perchlorate at the pro-
pellant surface. Under these conditions, layers of ammonium perchlorate particles are exposed as the
propellant regresses, which results in this low frequency peak in the response function. Due to the lack
of low frequency data, it is difficult to confirm this hypothesis.

At all pressures the ZN model outperforms the QSHOD model. The ZN model includes the effect
of pressure sensitivity on the surface pyrolysis reaction, which the QSHOD model does not. Thus, the
pressure sensitivity for that surface pyrolysis reaction is important and cannot be neglected in the surface
response prediction.

The ZNR model outperforms the ZN model, particularly at higher pressures. The ZNR model includes
the effect of radiative heating of virgin propellant by the combustion gases. As the combustion pressure
increases, the combustion temperature increases. Radiative heat-flux scales as T 4, thus as the pressure
increases the effect of radiative heat transfer can no longer be neglected.

The ZNR model was coupled to a first order (linearized) acoustics model and compared to experimen-
tal data for a full motor configuration. We used the acoustics model to predict the pressure responses of
a full-scale motor configuration, with comparisons made against the data of Blomshield et al. While this
model was not able to determine if the system was stable or unstable, it was able to recover the correct
trend in pressure decay rate with propellant web.
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1 Introduction
Solid rocket motors consist of a mixture of fuel, oxidizer, and other additives that is cast and cured into a
solid [1]. Solid propellants can typically be classified broadly in one of the following categories 1:

1. Double-base propellants consist of a homogeneous propellant grain utilizing highly-energetic compo-
nents containing both fuel and oxidizer. Double-base solid rocket motors typically contain a mixture
of nitrocellulose and nitroglycerin, along with several other additives.

2. Composite propellants consist of a heterogenous propellant grain utilizing fuel, oxidizer, and other
additives bound in a polymer matrix. A typical composite propellant might include ammonium per-
chlorate as the oxidizer, aluminum powder the as fuel, and hydroxyl terminated polybutadiene as the
polymer binder.

The propellant is cured and stored in the combustion chamber itself, and all exposed surfaces of the
propellant burn after ignition. The mass flow rate of exhaust gas produced from the burning propellant
surface is found using:

ṁ = Abrρb (1)

where Ab is the propellant burn area, r is the propellant burn rate, and ρb is the propellant density. The
propellant burn rate (per unit area) r is typically determined using the following empirical equation:

r = apn (2)

where p is the combustion chamber pressure, a is the burn rate coefficient, and n is the burn rate exponent.
The values for a and n are experimentally determined, and for a given propellant, the burn rate exponent
n must have a value less than one or else the motor pressure will be unstable with respect to burning area
and steady-state burning cannot be achieved.

1.1 Steady-State Combustion Mechanism
To discuss the stability of solid rocket motor combustion, it is first necessary to understand the combustion
process. We note that the combustion process is not fully understood and this is, in part, responsible for
the difficulty in prediction and modelling of combustion instability.

The combustion mechanisms for double-base and composite propellants differ considerably, so both will
be reviewed in the next two sections.

1.1.1 Combustion Mechanisms of Double-Base Propellants

Combustion of double-base propellants can be described in the following five zones, starting below the
propellant surface and moving spatially through the flame [2]:

1. Preheated propellant zone: The solid propellant is preheated by heat conduction from the surface, but
no chemical changes occur.

2. Degraded solid propellant zone: The propellant decomposes to yield nitrogen dioxide and aldehydes.
The nitrogen dioxide oxidizes the aldehydes at the burning surface such that the energy balance of this
step is exothermic.

3. Primary combustion zone: This is the first step in the gas-phase reaction zone. A reaction including
nitrogen dioxide, aldehydes, and small amounts of other species such as hydrogen, carbon, and oxygen
occurs, forming nitric oxide, carbon monoxide, water, hydrogen, and carbon-containing species.

4. Dark zone: Nitric oxide, carbon monoxide, hydrogen, and carbon-containing species undergo a series of
oxidation reactions, yielding nitrogen, carbon dioxide, water, and other species. However, heat release
in this region is too low for a luminous flame to be present.

1Some propellants combine properties of both categories, but these formulations are not in common use
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5. Secondary combustion zone: Assuming the pressure is high enough, greater than approximately 1
MPa, the final combustion products are formed and thermal equilibrium is achieved in the secondary
combustion zone, or flame zone. A flame zone will not be present if the pressure is too low. In this
scenario, the reduction of nitric oxide occurs too slowly for nitrogen to form and a flame to be produced.

Figure 1: Combustion Zones for a Burning Double-Base Propellant [1]

1.1.2 Combustion Mechanisms of Composite Propellants

The combustion of composite propellants can be described in the following three zones [3]:

1. Preheated propellant zone: The solid propellant is preheated by conduction from the surface, but no
chemical changes occur.

2. Degraded solid propellant zone: Oxidizer crystals in the heterogeneous propellant mixture degrade into
smaller fragments and the binder decomposes into hydrocarbons and hydrogen. In the case of an Am-
monium Perchlorate/Hydroxyl Terminated Polybutadiene (AP/HTPB) composite propellant, the AP
oxidizer degrades into perchloric acid, as well as nitrogen- and oxygen-containing species that become
oxidizers in the combusion zone reactions. The HTPB binder degrades through depolymerization into
hydrocarbon fragments, including ethelyne and other light species.

3. Combustion zone: The decomposition products of the oxidizer, binder, and fuel emerge unmixed into
the combustion zone, given that the propellant is a heterogeneous mixture. Therefore, a driving factor
in reactions in the combustion zone is the diffusion of these products. These products undergo multi-
staged reactions to produce the final combustion products and achieve thermal equilibrium. In the
case of an AP/HTPB composite propellant, fragments of perchloric acid, ethylene and other light
hydrocarbons, and melted metal fuel react to form water, carbon dioxide, hydrochloric acid, metal
oxide, and other trace species.
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Figure 2: Combustion Zones for a Burning Composite Propellant [1]

2 Mechanisms and Phenomenology

2.1 Acoustic Energy Balance and Combustion Instability
A powerful interpretation of the solid rocket motor is that it can be considered as comprising of two coupled
processes: the combustion process, and the acoustic process (see Fig. 3). These processes are coupled by

1. The response of the combustion process to the acoustic disturbance. That is, the change in combustion
rate to a pressure disturbance.

2. The response of the solid rocket motor acoustics to a disturbance in combustion rate. That is, the
change in the fluid dynamic properties (pressure and velocity) to a disturbance in the propellant burn
rate.

Figure 3: Solid Rocket Motor as a Feedback System

The stability (or instability) of solid rocket motor combustion is due to a balance between phenomena
which generate acoustic energy, and those which absorb acoustic energy. Acoustic energy can be generated
by the following processes [1]:

1. Fluctuations in the velocity of gasses leaving combustion zone.

2. Pressure and burn rate coupling in combustion zone.
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3. Interactions between flow oscillations in the combustion zone and the main flow.

4. Vortex shedding and impingement.

Acoustic energy can be dissipated by the following mechanisms:

1. Energy in longitudinal modes leave the system through the nozzle in the exhaust.

2. Visco-elasticity of the propellant, particularly at elevated temperatures.

3. The boundary layer present over the propellant and the walls damps acoustic energy due to viscous
dissipation.

4. Particles and droplets dissipate acoustic energy if they are in a volume of oscillating gas. The drag on
the particle / droplet acts to dissipate acoustic energy in the same way that a viscous boundary layer
does.

Note that the last item - particle damping - is a commonly used method to stabilize solid motor combustion.
Low smoke (i.e. unmetalized) APCP propellants often include a small amount (order of 1%) of refactory
particles, such as aluminum oxide or zirconium carbide. This is specifically to utilize the dissipation of
acoustic energy around particles. Due to the nonlinearity of their mechanism, it is very difficult for linear
stability theory to capture their effect correctly

Combustion within a solid rocket motor will be stable if acoustic energy gains are not larger than acoustic
energy losses [4]. If conservation of energy is considered, then in order for the combustion of a solid rocket
motor to be stable, the following inequality must be true:

∂E

∂t
+∇ ·W = D < 0 (3)

where E represents the system energy, W represents the work done on the system, and D represents total
summation of all sources and sinks of energy in the flow.

The thermoacoustic nature of this instability can be demonstrated using the Rayleigh criterion, which
determines if changes in acoustic energy in a flow will amplify or suppress flow oscillations [5]. The Rayleigh
parameter is defined as the time averaged product of pressure and heat release (q) during one period of flow
oscillation, denoted as p′q′. Using the Rayleigh criterion, if the following inequality is satisfied, then the
global combustion mechanism is liable to have instabilities:∫

V

p′q′dV > 0 (4)

2.2 Instability Mechanisms
There are broadly three types of combustion instability: (1) instabilities due to surface combustion; (2)
instabilities due to residual combustion in the main volume of the motor; and (3) instabilities due to vortex
shedding within the solid rocket motor.

2.2.1 Surface Combustion Instabilities

The combustion process of a solid rocket motor occurs primarily within a thin layer close to the surface of
the propellant. Since this is near-universal, regardless of motor size or composition, the surface combustion
instabilities are the most widely analyzed.

As outlined in Section 1, the burn rate of solid propellants is dependent on the chamber pressure, and
therefore fluctuations in pressure affect the burn rate, and vice versa. Other experiments and theory have
also shown a dependence between chamber temperature and burn rate as well [6]. These dependencies mean
that variations in these quantities near the burning surface can create oscillations that lead to combustion
instabilities.

Culick [6] notes that a part of the chemical energy released during the combustion processes of the
propellants transforms into mechanical motion of the exhaust gasses, which can stimulate a feedback path
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at the burning surface. Both the propellant burning surface and the combustion chamber itself possess
resonant properties. When the resonating frequencies of these two coupled systems are close, conditions for
combustion instabilities are present.

The series of steps required to initiate surface combustion instabilities was broadly outlined by Culick [6]
as follows:

1. A perturbation such as small change in pressure, temperature, or local gas mixing in the combustion
zone causes an increase in reaction rate in the combustion zone.

2. Temperature and energy release in the combustion zone increase due to the increased reaction rate.

3. The amount of heat transferred to the burning surface from the combustion zone increases, causing an
increase in temperature and gas production rate at the burning surface.

4. Heat flow into the subsurface region of the propellant increases due to the increased temperature at
the burning surface.

5. Subsurface decomposition reaction rates will tend to increase because of the increased heat flow to the
region.

6. Temperature will further increase in the subsurface region as exothermic reactions occur, which sub-
sequently increases the gas production rate at the burning surface.

7. If this fluctuation in mass flow leaving the burning surface is in phase with the original perturbation,
then the mass production rate at the burning surface is destabilized, and could lead to larger scale
surface combustion instabilities.

Culick [6] also describes a more quantitative response function for pressure fluctuations as the dimen-
sionless variable Rp:

Rp =
ṁ′

¯̇m

[
p′

p

]−1

(5)

where ṁ represents the mass flow due to propellant burning, p represents the chamber pressure, (∗)′ repre-
sents a fluctuation, and ¯(∗) represents a mean value. He continues by describing the sinusoidal tendencies of
the oscillations of mass flow and pressure with the following equations:

ṁ′

¯̇m
=

ˆ̇m
¯̇m
eiωt (6)

p′

p
=
p̂

p
eiωt (7)

where ˆ(∗) represents the amplitude of an oscillation. Rearranging, Culick shows that an oscillation in mass
flow can be found in terms of a pressure oscillation and the response function:

ˆ̇m
¯̇m

= Rp
p̂

p
(8)

Thus Rp is the transfer function of pressure disturbance to burn-rate disturbance. Being a complex value,
it contains both gain and phase information on the resulting perturbations.

Blomshield [7] notes that in an APCP motor, the particle size has a significant impact on the combustion
stability. If the particles are too small (< 5µm) then the pressure coupled response will be significant.
However, if the particles are too large (> 200µm), then stability problems can also occur, coupled with
increased non-linear acoustic erosivity. Higher burning rates (all else being equal) result in a lower pressure
coupled response as do low burn rate pressure exponents.

While the pressure coupled response is a strong function of pressure, it is not monotonic. That is there
will be some pressure at which the response function is largest, and deviations to lower or higher pressures
will result in a reduction in its value.
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2.2.2 Residual Volume Combustion Instabilities

Typically combustion of the propellant is restricted to a thin region near the surface of the grain. However,
in propellants with high metal loading, small droplets of metal may pass through the primary combustion
zone near the propellant surface and undergo combustion in the main volume of the motor. Whether this
mechanism is a source of instability is still a matter of debate. As a whole this mechanism is particularly
poorly understood.

Gallier and Godfroy [5] modeled the effects of aluminum combustion in the main volume of the chamber
and argued that it drove combustion instabilities. They detail that resulting combustion instabilities are
thermoacoustic and caused by the coupling of chamber acoustics and aluminum combustion mechanisms. In
another study, Gallier et al. [8] detail that fluctuations in the mass release rate of aluminum combustion are
influenced primarily by fluctuations in axial gas velocity . When an aluminum droplet leaves the burning
surface of the propellant, it is expected that it will disturb the flame as it moves with an axial velocity
component through the flame. This convective disturbance causes the flame area and heat release to fluctuate,
and potentially incites combustion instabilities.

This instability mechanism may also result from a reduction in alumina particles in the volume of the
combustion chamber to damp acoustic energy, as the combustion process is still producing them.

2.2.3 Vortex Shedding Instabilities

For larger solid rocket motors, the propellant consists of several grains which have been separately cast [9].
These segmented motors have slots and cavities present between each grain, where propellant combustion
is also present. The injection of combustion products into the main volume of the motor causes vortices to
form near the propellant surface surrounding the slot. Examples of the vortex structures are given in Fig. 4.

Figure 4: Vortex Shedding Mechanisms [1]

Instabilities caused by vortex shedding typically maintain a low frequency, with pressures oscillating by
less than 0.5% [9]. Although not typically destructive to motor function, in poorly designed motors, the
shedding of these vortices causes unstable flow in the motor. Furthermore, the shedding of these vortices
can couple to existing acoustic instabilities, compounding the instability.

This instability is typically only present in motors which are sufficiently large that the propellant must
be cast as separate grains, rather than a single monolithic grain. However, unstable boundary layers at the
burning surface of the propellant can also cause vortices to be shed [4]. In addition to vortex shedding,
periodic vortex impingement on a hard surface, such as the combustion chamber wall, can also cause pres-
sure fluctuations. If the frequencies of any of these vortex shedding phenomena are close to the resonant
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frequency of the combustion chamber, then the coupling of these mechanisms could lead to larger combustion
instabilities.

2.3 Manifestation of Combustion Instabilities
Regardless of the combustion instability mechanism, combustion instabilities typically manifest themselves
as periodic oscillating pressure waves in the combustion chamber of the motor [10]. Combustion instabilities
produce a mean pressure shift, or DC pressure shift, in the chamber, which can be catastrophic in a poorly
designed motor. When analyzing the pressure waves in the frequency domain, spectral peaks are visible.
These peaks correspond to the longitudinal modes of the combustion chamber, and are related to the coupling
between the combustion instabilities and the resonant properties of the combustion chamber. Pressure plots
illustrating these phenomena can be seen in Fig. 5.

Figure 5: Representative Pressure Measurements for Unstable Combustion [10]

Additionally, after combustion instabilities are initiated, the system limits sufficiently large pressure
oscillations due to non-linearities and settle into a limit cycle [6]. Parameters of the specific solid rocket
motor, such as combustion chamber geometry and propellant composition, characterize the amplitude and
period of the limit cycle.

Figure 6: Numerical Simulation of Pressure Oscillation in a Solid Rocket Motor Reaching a Limit Cycle [6]
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As is shown in Fig. 6, sufficiently large, unsteady pressure oscillations due to combustion instabilities
grow in amplitude until a stable limit cycle is reached. At this point, small perturbations in the pressure
oscillations will simply develop back into the limit cycle.

3 Combustion Response Models
Our focus is on the combustion instability aspect of the problem. For this reason, we will be considering a
range of combustion stability models, focusing on the surface combustion instabilities.

3.1 The Quasi-Steady Homogeneous One Dimensional (QSHOD) Model
Following the insight of Hart and McClure [11], that the characteristic heat conduction time in the solid
is an order of magnitude (or more) greater than the gas phase transport and kinetic timescales, leads to a
series of models (starting with the model of Hart and McClure) based on the assertion that the gas-phase
is in equilibrium at all times during combustion instability. That is the time-lag in the solid phase which is
the dominating physical process.

Over the following decade many models based on this underlying physical process were derived [11, 12,
13, 14, 15]. We refer to these as as the QSHOD model (following Culick). The QSHOD model is named
from the assumptions that underlie it:

1. quasi-steady except for unsteady heat transfer in the solid phase

2. homogeneous material properties that are constant with temperature and pressure

3. one-dimensional models

4. Instantaneous solid to gas phase transition

We refer to these models as a single model because, as shown by Culick [16], these models result in identical
dynamics. That is,

ṁ′

¯̇m

[
p′

p

]−1

=
nAB

λ+ (A/λ)− (1 +A) +AB
, (9)

where A and B are non-dimensional parameters defined by

A =

(
1− Ti

Ts

)
Ta
Ts
, (10)

B =
Ti
Ts

j(1− Ti
Ts

)
, (11)

where j is the index in the initial-temperature-dependent burn rate law ṁ ∼ pnTi
j . Furthermore, λ is

obtained by solving

λ (λ− 1) = iΩ, (12)

for the root with the positive real term, and Ω is the non-dimensional frequency Ω =
κpρBω
ṁ2c , c is the specific

heat capacity of the propellant, and κp is the thermal conductivity of the propellant. Some (minor) variation
in the result exists between different authors due to differences in the assumptions used for modelling the
gas phase.

Using the result above, Culick [16] was then able to show a linear stability estimate,

(B + 1) ≥ A (B − 1) , (13)

which reflects the fact that the stability of combustion is a function of the solid phase thermal response and
the gas phase.

The QSHOD model splits the solid motor combustion process into three regions:
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1. Solid phase

2. Solid-gas interface

3. Gas phase

These regions are shown schematically in Fig. 7

Figure 7: Combustion Process Used by QSHOD Model [13]

The solid phase, referring to the unburnt propellant, is treated as a 1D, homogeneous material with
constant properties. Rather than a pyrolysis zone, the transition from solid to gas is assumed to occur
instantaneously. The solid-gas interface is governed by conservation of mass and energy, as well as a model
for the solid-gas conversion process. Typically an Arrhenius law is assumed. However, since the model is
linearized about a single point, the exact form of this term is not important. Modelling of the gas phase
is the most complicated, and is treated slightly differently by the various authors. For example, Denison
and Baum [15] assume equal diffusion coefficients for all species and species diffusion due to concentration
gradient only, where as Hart et al [14] do not include any diffusion effects. Since the gas phase is assumed to
equilibrate instantaneously, the effect of the simplifications has little effect on the final result. This coupled
set of models is linearized about the steady state solution and a perturbation analysis is performed.

3.2 Zel’dovich - Novozhilov (ZN) Model
In 1942, Zel’dovich [17], using the same assumption that the solid phase thermal transients are the dominant
low frequency effect (but almost 20 years before Hart and McClure) developed a theoretical framework for
the combustion and explosion of solid materials. Novozhilov extended this work to the stability of solid
rocket motors [18, 19]. The resulting model can be thought of as almost equivalent to the QSHOD model,
but including the effect of pressure on the surface pyrolysis rate. The model requires definitoin of four
parameters:

k = (Ts − Ti)
(
∂ log ṁ

∂Ti

)
p

, (14)

r =

(
∂Ts
∂Ti

)
p

, (15)

ν =

(
∂ log ṁ

∂ log p

)
Ti

, (16)

µ =
1

Ts − Ti

(
∂Ts
∂ log p

)
Ti

. (17)

Using these parameters, the response function is derived as,

ṁ′

¯̇m

[
p′

p

]−1

=
ν + (νr − µk) (λ− 1)

r (λ− 1) + k
(

1
λ

)
+ 1

. (18)
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Comparing the definitions in this section to those used in the QSHOD model, we see that,

A =
k

r
, (19)

B =
1

k
, (20)

n = ν. (21)

After making these substitutions, we can see that this result is nearly equivalent to the QSHOD model.
This is unsurprising since the assumptions made during the construction of the Zel’dovich - Novozhilov
model are the same as those of the QSHOD model. However, using the combustion analysis of Zel’dovich
resulted in dependence on a different (although related) set of physical parameters, which are easier to obtain
from experiment. Novozhilov went on to obtain explicit (linear) stability criteria, either (1) k < 1, or (2)
r > (k − 1)

2
/k + 1.

The flexibility of the Zel’dovich - Novozhilov model has allowed it to be used in a several linear stability
estimates for response to non-sinusoidal disturbances [20, 21].

3.3 ZN Model with Condensed Phase Radiative Heating Corrections (ZNR)
Brewster and Son [22], and Zebrowski and Brewster [23] examine the validity of assuming that the solid
phase reaction is a zeroth-order Arrhenius type reaction located at the propellant surface. By introducing
a slightly more complex model for the burn rate from Ibiricu and Williams [24], they were able to derive
new forms for the Zel’dovich parameters to account for radiative heating of the propellant, which can be
significant,

r =
k [2−Qc −Qr]− 1(

1− Ti
Ts

)
(1 + E) (2−Qc − 2Qr)− 1

, (22)

µ =
ν [2−Qc −Qr](

1− Ti
Ts

)
(1 + E) (2−Qc − 2Qr)− 1

, (23)

δ =
−ν(

1− Ti
Ts

)
(1 + E) (2−Qc − 2Qr)− 1

. (24)

The Qc and Qr are non-dimensional heating values, defined as,

Qc =
Ls

cp (Ts − Ti)
, (25)

Qr = frJ, (26)

where Ls is the condensed-phase heat release (note positive is exothermic), fr is the fraction of incident
radiative heat-flux absorbed below the surface reaction zone, and J is a non-dimensionalized form of the
radiative heat-flux (q),

J =
q

cp (Ts − Ti)
(27)

With these parameters defined, they define the following response function:

ṁ′

¯̇m

[
p′

p

]−1

=
nAB + ns (λ− 1)

λ+ (A/λ)− (1 +A) +AB − QrA(λ−1)
β+λ−1

, (28)

We need to define the optical thickness of the conduction zone (β), as

β =
αc
r

5fv
k
, (29)

where αc is the thermal diffusivity of the propellant, fv is the carbon loading volume fraction, and k is the
characteristic wavelength (taken as 1.5µm from [22]). We assume the radiative heat-flux incident to the
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surface is black-body radiation from the combustion gases. That is q = εσT 4, where we use ε = 0.33 from
calculations by Brewster and Son [22].

They also introduce new parameters to account for radiative heat transfer (q) to the reaction zone from
the gas phase, however we do not have suitable data available to assess it

νq =

(
∂ log ṁ

∂ log q

)
Ti,p

, (30)

µq =
νq [2−Qc −Qr]−Qr(

1− Ti
Ts

)
(1 + E) (2−Qc − 2Qr)− 1

, (31)

δq =
−νq + kQr(

1− Ti
Ts

)
(1 + E) (2−Qc − 2Qr)− 1

. (32)

This allows introduction of a new response function,

ṁ′

¯̇m

[
q′

q̄

]−1

=
νqAB + nq (λ− 1)− QrA(λ−1)

β+λ−1

λ+ (A/λ)− (1 +A) +AB − QrA(λ−1)
β+λ−1

, (33)

which is the frequency response function driven by radiative heating. Based on the nonlinear analysis
performed in their work, it is suggested that the transient in the propellant phase transition is more important
than the gas phase kinetics. Furthermore, they call in to question the assumption involved in using a zeroth-
order, single-step Arrhenius model for the entire solid-to-gas transition process.

3.4 QSHOD Model with Surface Layer Time Lag (QSHOD-τ)
Cheng [25] formulated a modified QSHOD model that accounts for the discrepancy between reaction rates
of the combustion processes at the propellant surface versus in the gas phase. He introduced the following
response function to account for this difference in reaction rates:

ṁ′

¯̇m

[
p′

p

]−1

= Rp
e−iΩτ√

1 + (Ωτ)2
, (34)

where Rp is the classic QSHOD response function given in Equation 9, Ω is the dimensionless frequency, and
τ is the dimensionless time lag τ = T/(αc/r

2), where T is the physical time lag, αc is the thermal diffusivity
of the propellant, and r is the propellant burn rate.

In this model, τ is treated as a constant. However, this introduces a problem where the response function
produces oscillatory behavior where the period increases as frequency increases [6]. This is not a realistic
combustion response. For most processes that introduce a time-lag, τ is likely a function of Ω. However, if
we examine Boggs et al [26] and their analysis of propellant heterogeneousness, there may be an effect that
is independent of the driving frequency.

3.5 Shusser-Culick (SC) Model
Shusser and Culick [27] relax the propellant homogeneity assumption to produce a modified QSHOD model
that handles oxidizer and binder separately. They consider the response of AP and binder separately before
combining the responses as the final step. Separate AP and binder response functions are expressed as
follows:

RAP =
ṁ′AP
¯̇mAP

[
p′

p

]−1

(35)

RB =
ṁ′B
¯̇mB

[
p′

p

]−1

(36)
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These response functions are defined using

RAP =
nAPBAP + CAPFB

[λAP /AAP + 1/λAP − (1−BAP )− 1/AAP ]− (CAPCB/nBBB)FB
, (37)

RB =
nBBB + CBFAP

[λB/AB + 1/λB − (1−BB)− 1/AB ]− (CAPCB/nAPBAP )FAP
. (38)

FAP and FB are the classic QSHOD response functions for AP and binder:

FAP =
nAPAAPBAP

λAP +AAP /λAP − (1 +AAP ) +AAPBAP
, (39)

FB =
nBABBB

λB +AB/λB − (1 +AB) +ABBB
, (40)

and CAP and CB are coupling coefficients. Unlike in the classic QSHOD model, the coefficients in these
response functions do not have explicit relationships to physical parameters. AAP , BAP , and nAP can be
considered as roughly analogous to the A, B, and n parameters in the classic QSHOD models because AP
can self-deflagrate. Conversely, the values for Ab, Bb, and nb cannot be regarded as analogous as the binder
does not burn on its own.

The pressure exponents nAP and nb are coupled are also related to the propellant burn rate exponent n
with the following equations:

n1 = nAP +
Cx
Bx

n2 (41)

n2 = nB +
Cf
Bf

n1 (42)

n = αAPn1 + αBn2 (43)

The overall response function is found by taking the mass-weighted average of the AP and binder response
functions:

Rp = αAPRAP + αBRB . (44)

4 Combustion Stability Results
We compare the models listed in section 3 against data from Blomshield et al [28] for an AP/HTBP pro-
pellant with 88% AP loading with 55µm diameter particles. The data provided is the combustion response
determined from T-Burner test at three pressures: 3.45MPa, 6.90MPa, and 10.34MPa.

4.1 QSHOD Model Analysis
A plot of the QSHOD model fit to experimental data at different pressures can be seen in Figure 8 below.
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Figure 8: QSHOD Model Fit to Experimental Data [28] at Varying Pressures

Values were fit for parameters A and B in the QSHOD model response function and are given in Table
1. The root mean square error for the fit is also listed.

p [MPa] A B R.M.S Error
3.45 5.773 0.8229 0.2905
6.90 4.322 0.5563 0.2531
10.34 2.773 0.4786 0.3242

Table 1: Model Parameters and R.M.S Errors for QSHOD Model at Varying Pressures

The values for A and B were then used to calculate other relevant but unknown parameter values. The
definition of A given in Equation 10 was rearranged to solve for Ta and the definition of B given in Equation
11 was rearranged to solve for j as follows:

Ta (A) = A
1− Ts
1− Ti

Ts

(45)

j (B) =
Ti
Ts

B
(

1− Ti
Ts

) (46)

It was assumed that Ti = 300K. Ts was taken as mass-weighted average of propellant surface tempera-
tures for AP and binder given by Lengelle et al [29]: Ts = αAPTs,AP + αBTs,b. Using the values in Table 1,
the following values for Ta and j at varying pressures are given below.

p [MPa] Ta(A) [K] j(B) [-]
3.45 7998 0.5643
6.90 5987 0.8348
10.34 3842 0.9703

Table 2: Model Parameters and R.M.S Errors for QSHOD Model at Varying Pressures
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4.2 ZN Model Analysis
The ZN Model was used to fit the data from Lengelle et al [29] and produces a noticeably different curve
shape, shown in Figure 9.

Figure 9: ZN Model Fit to Experimental Data [28] at Varying Pressures

The parameters k, r, and µ from the response function given in Equation 18 were fit to the experimental
data, and their fitted values are given in Table 3.

p [MPa] k r µ R.M.S Error
3.45 1.144 0.0497 0.3896 0.2042
6.90 2.864 0.4444 0.4476 0.0860
10.34 4.068 0.9335 0.4911 0.1489

Table 3: Model Parameters and R.M.S Errors for ZN Model at Varying Pressures

The three parameter values all increase with chamber pressure. When considering the parameter defini-
tions given in Equations 14, 15, and 17. The equivalent A and B parameters, calculated using Eq. 19 and
Eq. 20 are given in Table 4 below. In general, the ZN model produces higher A values and lower B values
than the QSHOD model. That is, the ZN model suggest that the activation temperature for the propellant
combustion reaction is higher than in the QSHOD model does, and also the sensitivity to initial propellant
temperature is lower.

p [MPa] A B
3.45 23.0 0.974
6.90 6.4 0.349
10.34 4.4 0.9335

Table 4: Effective A and B parametres
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4.3 ZNR Model Analysis

Figure 10: ZNR Model Fit to Experimental Data [28] at Varying Pressures

p [MPa] k δ fr R.M.S Error
3.45 0.1085 1.698 0.3520 0.2510
6.90 0.1947 6.988 0.4889 0.0825
10.34 0 4.857 0.4750 0.1041

Table 5: Model Parameters and R.M.S Errors for ZNR Model at Varying Pressures

Its interesting to note that this model predicts much lower values for k, than the ZN model. This is because
k is the sensitivity of burn rate to propellant initial temperature; with 35% to 50% of the incident radiative
heat being absorbed by the virgin propellant, the effect of the radiative heating dominates the enthalpy
associated with the initial propellant temperature.

4.4 QSHOD-τ Model Analysis
The QSHOD-τ Model was implemented with an enforced bound of τ > 0 in the curve fitting. The resulting
fitted curves at varying pressures are shown in Figure 11.
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Figure 11: QSHOD-τ Model Fit to Experimental Data [28] at Varying Pressures

The curve fitting procedure set τ = 0 for chamber pressures of 6.90 MPa and 10.34 MPa. The resulting
curves for these pressure are therefore identical to the curves for the classic QSHOD Model curves shown in
Figure 8.

p [MPa] A B τ R.M.S Error
3.45 8.097 0.6713 0.1622 0.1845
6.90 4.332 0.5563 0 0.2531
10.34 2.773 0.4787 0 0.3242

Table 6: Model Parameters and R.M.S Errors for QSHOD-τ Model at Varying Pressures

Note that the coefficients are the same as the QSHOD model for the 6.90MPa nad 10.34MPa. However for
the 3.45MPa case, a τ of 0.1622 is predicted and results in a 30% lower rms error. This suggests that at lower
pressures there may be a process active (which is not active at the higher pressures) with an approximately
constant phase lag compared to the input disturbance. For lower pressures (generally around 20atm) the
AP is not able to melt, and particles of AP would protrude from the surface of the propellant. Following
Boggs et al [26], we calculate that protruding oxidizer particles would excite a mode at approximately 180Hz.
We can see that this τ parameter introduces a new peak in the response function at approx. 200Hz. Thus
the 3.45MPa propellant may be at sufficiently low pressure not to form an AP melt layer, and there is an
excitation due to the solid AP grains protruding the surface at around 200Hz. Note that this mechanism
is independent of imposed frequency, meaning the constant time lag model used would be appropriate to
model it. We would not expect to see this mode at higher pressures, because the AP particles will form a
melt layer and this excitation mode will not exists.

If we perform a similar analysis of the A and B parameters presented in Table 6 as was done for the
classic QSHOD parameters in Section 4.1, then we find the following values for Ta(A) and j(B):
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p [MPa] Ta(A) [K] j(B) [-]
3.45 1122 0.6918
6.90 5987 0.8348
10.34 3842 0.9703

Table 7: Model Parameters and R.M.S Errors for QSHOD Model at Varying Pressures

4.5 SC Model Analysis

Figure 12: SC Model Fit to Experimental Data [28] at Varying Pressures

The corresponding parameters for the curves are presented for each pressure in Table 8.

p [MPa] AB AAP BB BAP CB CAP nAP R.M.S Error
3.45 2.045 11.99 11.88 0.6913 73.27 -0.002893 0.07791 0.4339
6.90 54.35 6.562 11.03 1.233 -0.1117 -2.174 0.5473 0.3358
10.34 7.991 8.297 7.941 2.836 -1.556 -11.47 0.1205 0.4431

Table 8: Model Parameters and R.M.S Errors for SC Model at Varying Pressures

The values for AAP and BAP can be treated somewhat analogously to the A and B parameters used in
the classic QSHOD response function model given in Equation 9, and their values are relatively similar to
the values given in Table 1.

It it important to not however that the fitted curves in Figure 12 and corresponding parameters in Table
8 are presented tentatively for this model. Given the large number of parameters and relatively few data
points, the curve fitting procedure was very sensitive to initial parameter guesses and parameter bounds.
Small changes in the initial parameter guesses often led to vastly different output parameters from the curve
fitting procedure. Some of these curves are shown in Figure 13 for a chamber pressure of 3.45 MPa.
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Figure 13: SC Model Curve Fittings at P = 3.45 MPa with Experimental Data [28]

These fitted curves, despite having very different shapes, all have same order R.M.S Errors, which are
given in Table 9 along with the corresponding fitted parameters.

Parameter Set AB AAP BB BAP CB CAP nAP R.M.S Error
1 2.045 11.99 11.88 0.6913 73.27 -0.002893 0.07791 0.4339
2 52.72 7.785 8.246 0.5567 1.609 -0.03602 0.4857 0.5516
3 29.59 14.37 1.049 0.6694 2.603 -5.231e-06 0.04946 0.2032
4 0.1682 8.303 17.32 0.7498 18.74 -0.8886 0.385 0.6696

Table 9: Parameter Values of Various Curve Fittings for SC Model at P = 3.45 MPa

4.6 Model Comparison
We compare the different models for the 3.45MPa case in Fig. 8 below. Its interesting to note that the best
fits to the data are the QSHOD-τ and the SC models. The SC model explicitly includes the effect of het-
erogeneousness of the propellant and, as hypothesized in section 4.4, the QSHOD-τ model is consistent with
excitation due to the AP particles. This suggests that at these lower pressures, the combustion mechanism
results in particular sensitivity to the propellant being heterogeneous. The QSHOD-τ correctly returns the
steady state limit, while the SC model does not.
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Figure 14: Comparison of Best Fit Curves and Experimental Data [28] for a Chamber Pressure of 3.45 MPa

The predictions for the 6.90MPa case are given in Fig. 15 below. Note that the QSHOD and the QSHOD-τ
results are identical, and mostly fail to capture the data except for the general trend. The SC-model performs
well in the low frequency regime, suggesting that the effect of hetergeneousness may be important to the
low freqency responds. However, the ZN and ZNR models (which do not account for the propellant being
heterogeneous) also match well, and do so across all frequencies. This suggests that the dependence of surface
pyrolysis to pressure cannot be neglected.

Figure 15: Comparison of Best Fit Curves and Experimental Data [28] for a Chamber Pressure of 6.90 MPa
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The results for the different models at 10.34MPa are given in Fig. 16. We can see that the ZNR model
performs best out of all the models examined. This suggests that at these higher pressures, the radiative
heating to the propellant by the combustion gas is significant. This is reasonable, since increasing combustion
pressure also increases combustion temperature, and emitted radiative heat-flux scales as T 4. Thus, at higher
pressure,s the preheating of the propellant by radiative heat transfer becomes a significant phenomena.

Figure 16: Comparison of Best Fit Curves and Experimental Data [28] for a Chamber Pressure of 10.34 MPa

The root mean square errors of the models for each pressure are given in Table 10, with the best performing
model highlighted. For the lowest pressure, the QSHOD-τ model performs the best, where as the ZNR model
is the best performing for the other pressures. From this we tentatively hypothesize the following about the
combustion process:

1. At low pressures, the combustion dynamics includes a process where the lag is independent of forcing
frequency. The low frequency peak predicted by the QSHOD-τ model closely matches the frequency
predicted by Boggs frequency layer analysis - where there is a mode associated with the layering of
oxidizer in the binder. We suspect that at these lower pressures, the AP surface temperature is too low
for form a a molten layer, thus the combustion process ‘sees’ layers of AP particles as the propellant
regresses.

2. At higher pressures, the temperature of the combustion gas is sufficiently high such that the effect of
radiative heatflux from the combusted gas preheating the propellant can no longer be neglected.

3. The pressure effect of the surface decomposition rate cannot be neglected when considering combustion
response.

Pressure QSHOD Model ZN Model ZNR Model QSHOD-τ Model SC Model
3.45 MPa 0.2905 0.2042 0.2510 0.1845 0.4339
6.90 MPa 0.2531 0.0860 0.0825 0.2531 0.3358
10.34 MPa 0.3242 0.1489 0.1041 0.3242 0.4431

Table 10: R.M.S. Errors for All Models at Varying Pressures (Lowest R.M.S. Error Highlighted)
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5 New Supply Only Design Parameters (SODP) Model
In the previous section, initial attempts at determining the parameters for the models were made using
physical parameters where possible, however it quickly became an exercise to fitting experimental data. If a
propellant is sufficiently well characterized, then this is not an issue, however even relatively small changes
to the propellant formulation can have significant effects on the response function. For examples Fig. 17
shows the experimental response function for different propellants AP/CTBP, where the only change is the
AP particle diameter. We can see that simply changing the oxidizer particle diameter significantly changes
the response function. This makes it impractical to use parameters found for one propellant for even a slight
variation.

Figure 17: AP/CTPB Results

To that end, we derive our own stability model based on the combustion model of Lengelle et al [29]
for AP-binder composite propellants. We do this to derive a model for the response function that does not
require fitting to experimental data. That is, a model that depends on design level propellant parameters,
which the user can specify, and ‘universal’ parameters such as the degradation kinetics of AP.

5.1 Combustion Model of Lengelle et al [29]
The combustion model is based on a ‘two flame’ approximation above semi-infinite columns of AP and binder
as shown in Fig. 18. As the AP is heated, it decomposes and sublimates, forming products which burn close
to the AP surface (approx. 1µm) and form the lower AP flame. The binder decomposes forming products
which burn in a diffusion flame with the AP products. This forms a second (main) flame above the AP
flame, which heats the AP flame, and provides the energy to decompose the binder.
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Figure 18: Two-Flame model [30]

We start by considering the combustion of the AP particles in isolation. As the AP is heated, it melts at
approximately 835K. This molten AP then proceeds to undergo decomposition and sublimation. Approx-
imately 70% of the AP decomposed primarily forming N2, N20, NO, HCl, Cl2, and O2. The remaining
30% sublimates into ammonia and perchloric acid. The products, containing both fuel and oxidizer, form
a premixed flame approximately 1µm from the surface of the AP. Since the flame is premixed, the reaction
rate is a function of the kinetics, and from experiment the AP reaction rate is given by,

w = p2Ag,AP e
−

Eg,AP
RTf,AP (47)

where Ag,AP and Eg,AP ] are given in Appendix A. The burning rate of the AP can also be determined by,

mAP = p

√√√√λgAg,AP
cp,g

e
−

Eg,AP
RTf,AP

log

(
1+

cg(Tf,AP−Ts,AP )
Qc

)
, (48)

where Tf,AP and Ts,AP are the AP flame and surface temperatures respectively, and Qc is the energy required
to take the AP from molten to gaseous.

We now consider the combustion of the binder. The binder is heated by the main flame, and decomposes,
which results in a fuel jet (from the decomposed binder), and an oxidizer jet (from the AP products). Thus,
we can see that a diffusion flame will occur in the interface between the binder and AP decomposition
products. Thus, in the diffusion limited regime, the flame height can be determined as a function of the
AP particle diameter. Furthermore, the effect of the chemical kinetics is included to obtain the following
expression for the main flame height,

xf = ṁ

[
cp,g

8Adλg
D2
ox +

1

p2Ag,f
e
Eg,f
RTf

]
(49)

As well as pyrolyzing the binder, the main flame also supplies heat to the AP flame, increasing its
temperature, and so augmenting the rate the AP burns. This additional heating to the AP flame is accounted
for using,

qf,AP = mpQfe
−
mpcp,g(xf−xf,A)

λg , (50)

where xf,AP is the height of the AP flame, Qf is the energy evolved by the main flame, and mp is the total
propellant burning rate.

After restriction to a one dimensional setting, and balancing heat and mass transfer at the surfaces of the
AP and the binder, as well as the two flame sheets, the full model is derived. This is a system of non-linear
equations that must be solved via the following procedure:
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1. Pick a value for s =
ṁp
ṁAP

2. Solve the following for the flame temperature of the AP (Tf,AP )

∆hH,AP + ∆hD,AP + cp,g (Tf,AP − Ts,AP ) = Qc,b
1− αAP
1− αAP s

[
1 +

cp,g (Tf,AP − Ts,AP )

Qc

]s
s (51)

3. Solve the following for ψ

s =
1

ψ

√√√√√e
Eg,AP
RTf,AP

Ag,AP

log
Qf
Qc,b

1−αAP
1−αAP s

log 1 +
cp,g(Tf,AP−Ts,AP )

Qc

(52)

4. Calculate the combustion pressure (p) from

ψ =
cp,g

8Adλg
(pDox)

2
+
e
Eg,f
RTf

Ag,f
(53)

5. Calculate ṁAP from,

ṁAP = p

√
λgAg,AP
cp,g

e
−
Eg,AP
Tf,AP log 1 +

cp,g (Tf,AP − Ts,AP )

Qc
(54)

6. Calculate ṁp form ṁAP and s

This method has been implemented in matlab and compared to the experimental data provided by
Lengelle et al, shown in Fig. 19.

Figure 19: Combustion model of Lengelle et al [29] for 80% AP loading

The values for the coefficients used were fit from experimental data by Lengelle [29] and are listed in
appendix A.
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5.2 Derivation of Stability Model
Note, in this section, we will use (∗)′ to be a perturbation and unprimed symbols to be a time averaged
quantity. For clarity, we will also drop the ˙(∗) when considering quantities such as mass flow per unit area
(m).

In deriving our stability model, we also assume the same ‘two flame’ approximation above semi-infinite
columns of AP and binder. For a semi-infinite material recessing at constant rate, if a sinusoidal temperature
perturbation (T̂ ) is applied to the surface with frequency ω, it can be shown that the resulting perturbed
temperature profile is given by,

T ′

T
=
T̂
eλξpe−iωt, (55)

where ξp = r
αp
x, and λ is given by the root with positive real part of,

λ (λ− 1) = −i κpρp
mpcp

ω. (56)

We assume that the AP ‘column’ and the binder ‘column’ see the same temperature perturbation (i.e.
T̂ and ω are the same), and the thermal conduction between the two columns are negligible. Under these
conditions the spatial frequencies of the AP and binder (λAP and λB respectively) responses are, the positive
real-part roots of,

λB (λB − 1) = −i κBρB
mBcp,B

ω, (57)

λAP (λAP − 1) = −i κAP ρAP
mAP cp,AP

ω. (58)

At the surface of the binder, the perturbation heat-flux is given by,

q′B = mBcp,B

(
λB +

cp,g
Cp,B

− 1

)
T ′s + cp,B

(
1

λB
(Ts,B − T0) +

Ls,B
cp,B

)
m′B , (59)

where Ls,B is the enthalpy change across the interface due to heat of decomposition for the binder (−360cal/g).
From Lengelle et al [29], the heat-flux to the binder is given by,

qB = mB

(
1− 1

s

)
Qfe

−
m2
B(1− 1

s )
2
cp,gD

2
ox

8Adκg . (60)

So, the heat-flux perturbation is given by,

q′B =
∂qB
mB

m′B +
∂qB
∂s

s′. (61)

Similarly, for the AP,

q′AP = mAP cp,AP

(
λAP +

cp,g
Cp,AP

− 1

)
T ′s + cp,AP

(
1

λAP
(Ts,AP − T0) +

Ls,AP
cp,AP

)
m′AP , (62)

where Ls,AP is the enthalpy change across the interface due to heat of decomposition and sublimation for
the AP (+115cal/g). From Lengelle et al [29], the heat-flux to the AP is given by,

qAP = mAP sQf

[
1 +

cp,g (Tf,AP − Ts,AP )

Qc

]s
e
−m

2
AP s

2cp,gD
2
ox

8Adκg , (63)

where Qc is a function of the surface temperature of the AP (Ts,AP ). Again, the perturbation to the heat-flux
is given by,

q′AP =
∂qAP
mAP

m′AP +
∂qAP
∂s

s′ +
∂qAP
∂Tf,AP

T ′f,AP +
∂qAP
∂Ts,AP

T ′s,AP . (64)
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By equating, Eq. 59 with Eq. 61, and Eq. 62 with Eq. 64, then noting that m′ = m′AP +m′B , we obtain,

Rp =
m

p

[
1−

[
cp,B

(
1

λB
(Ts − T0) +

Ls,B
cp,B

)
− ∂qB
∂mB

]−1 [
∂qB
∂s
CBs,B −mBcp,B

(
λB +

cp,g
cp,b
− 1

)
CBTs,B

]]−1

×
[
cp,B

(
1

λB
(Ts − T0) +

Ls,B
cp,B

)
− ∂qB
∂mB

]−1 [
∂qB
∂s
CBs,p −mBcp,B

(
λB +

cp,g
cp,b
− 1

)
CBTs,p

]
+
m

p

[
1−

[
cp,AP

(
1

λAP
(Ts − T0) +

Ls,AP
cp,AP

)
− ∂qAP
∂mAP

]−1 [
∂qAP
∂s
CAPs,AP +

∂qAP
∂Tf,AP

CTf ,AP

+

(
∂qAP
∂Ts,AP

−mAP cp,AP

(
λAP +

cp,g
cp,AP

− 1

))
CAPTs,AP

]−1

×
[
cp,AP

(
1

λAP
(Ts − T0) +

Ls,AP
cp,AP

)
− ∂qAP
∂mAP

]−1 [
∂qAP
∂s
CAPs,p

∂qAP
∂Tf,AP

CTf ,AP

+

(
∂qAP
∂Ts,AP

−mAP cp,AP

(
λAP +

cp,g
cp,AP

− 1

))
CAPTs,p

]
. (65)

The expressions for CBs,B etc. are relatively complex, and are given in appendix B. Note that this requires
solution of the combustion model as part of the stability procedure.

Like other models examined in the previous section, the only transient part of the analysis is the heat
conduction in the solid. However, we have used a significantly higher-fidelity combustion model than is used
by existing models. The means, the model does not contain user supplied ‘magic’ coefficients that must be
fit to each formulation individually. Instead, this formulation relies on published kinetics and design level
propellant parameters such as AP mass fraction and particle diameter.

5.3 Comparison to Experimental Data
We compare our newly derived stability model to the data from Blomshield et al [28]. The formulations
tested are ‘low-smoke’ i.e. are AP/HTPB propellants with αAP = 0.88 and Dox = 55µm.

Figure 20: Comparison of SODP Model and Experimental Data [28]
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The results are clearly sub-optimal; neither the zero-frequency limit is correct, nor is the trend of response
function with combustion pressure. The model is complex, so it is challenging to determine if there is an
error in the implementation, the derivation, or the underlying assumptions.

6 Acoustic Modelling
Referring back to Fig. 3, even equipped with a combustion response model, it is still necessary to provide
an acoustics model to predict the pressure response of a propellants. In this section we discuss options for
modelling the acoustics and show results using a simplified linear acoustics model.

Approximate linear and nonlinear analysis is concerned with examining the behavior of coupled normal
modes by reducing the governing equations to a system of coupled nonlinear ODEs. This procedure was
introduced by Culick [31, 32] and Powell et al [33]. The pressure and velocity fields are expanded about the
steady state solution,

p = p+ p′, (66)

u = ū+ u′, (67)

where p′ and u′ are the perturbations to the pressure and velocity fields respectively. Since the Euler
equations are non-linear, we have a choice in to what order we expand these equations. For example, a term
given by S = kp3 expands to,

S = k (p+ p′)
3

= kp︸︷︷︸
SteadyState

+ 3kp2p′︸ ︷︷ ︸
1stOrder

+ 3kpp′2︸ ︷︷ ︸
2ndOrder

+ kp′3︸︷︷︸
3rdOrder

(68)

The maximum order of the terms retained determines the order of the approximation used. The pressure
and velocity disturbances are assumed to take the following form,

p′ = p
∑

ηn (t)ψn (x) , (69)

v′ = p
∑ ηn (t)

γk2
n

ψn (x) , (70)

where kn is the wave number of the spatial mode. The normal modes from a cavity with the same geometry
as the solid rocket motor and defined by ψn, and ηn is the magnitude of these modes. The problem then
becomes solving a system of coupled nonlinear equations for ηn of the form,

η̈n + ω2
nηn = Fn, (71)

where Fn is a nonlinear forcing term that is a function of η and η̇ for all the modes in the system. The
nonlinear forcing term is also a function of the coupling between surface pressure and pyrolysis rate.

An example of Eq. 71 is given in Eq. 72, for the case of a first order system (linear) subject to energy
and mass sources,

η̈n + ω2
nηn = − ā2

pE2
n

[∫ (
− 1

ā2

R

Cv

∂Q̇′

∂t

)
ψndV +

∫∫ (
−ρ̄ ∂u

′

∂t
· n̂
)
ψndS

]
. (72)

Note that En =
∫
ψ2
ndV .

Culick and Levine [32] found that the surface response function resulting from the QSHOD analysis is
sufficient for small disturbances (/ 10%).

Yang, Kim, and Culick extended the work of Culick [31, 32] to include the effect of transverse oscillations,
specifically the first two radial and tangential modes [34], and spinning modes [35]. Examination of third
order acoustic modes had very little effect on triggering of nonlinear instability.

Paparizos and Culick [36] simplify the analysis by treating two-modes and second order acoustics. In this
setting, they are able to use the geometric theory of dynamical systems to obtain analytic results. While the
results are identical to those presented by Culick [37, 38], the analysis method was new, and allowed for a
more rigorous numerical treatment of the solutions. Paparizos and Culick were able to prove that if a stable
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limit cycle exists, it is independent of initial condition. They were also able to show that energy transfer is
primarily from low to high modes, which explains why two-mode analysis is unable to produce reasonable
results if the second mode is unstable. An example of the nonlinear stability region obtained by Paparizos
and Culick is given in Fig. 21.

Figure 21: Regions of Nonlinear Stability as a Function of Phase (θ) and Attenuation (α) [36]

Jahnke and Culick [39] extended the work of Paparizos and Culick to include more degrees of freedom.
That is, they applied nonlinear dynamic systems theory to two-, four- and six-mode systems. Using their
analysis, they are able to show that the stability boundaries determined using two-mode analysis is a feature
of the low-order approximation. When the analysis includes more modes, it is found that linear instabilities
in the first (lowest) mode result in a limit cycle instead of a nonlinear instability.

Burnley et al [40] applied the theory of nonlinear dynamic systems to solid propellant motors with ad-hoc
velocity coupling models to investigate the triggering of nonlinear instabilities. When the effect of velocity
coupling is included, nonlinear instability triggering is obtained for conditions that were stable otherwise.

Flandro [41] extended the work of Culick [31, 32], by expanding the system in the amplitude perturbation
parameter to third order, and including an expansion of the energy-density in the analysis. Terms to model
the effect of shock propagation through the motor were also included. It is interesting to note that the
higher-order terms when expanding the surface response function model the velocity coupling to surface
response naturally. Comparisons to experimental data indicate that the model can predict triggering and
limit cycles (see Fig. 22). However the assumptions used when formulating this model mean it is unable
to reproduce a DC pressure shift. Culick [42] notes that assuming that the perturbation parameter (ε) is
constant in time is not physical, but acknowledges that the ideas treated in Flandro’s model are important
and the predictions are of good quality.
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(a) Experimental Results (b) Numerical Results

Figure 22: Comparison of Flandro’s Approximate Method to Experimental Data [41]

Flandro [43] introduced corrections to the model to include the effects of vortex shedding for larger motors
by including a modification of Culick’s flow turning stability correction. Comparisons to experimental data
indicate an improvement over the original method.

Figure 23: Comparsion of Flandro’s Vortex Shetting Method to Experimental Data [43]

A key aspect that was missing from the original formulation Flandro presented was the ability to predict
DC pressure shifts. This issue was rectified in later work by Flandro et al [44, 45] by retaining the nonlinear
terms in the continuity equation when performing the numerical analysis. Comparisons to experimental data
in Fig. 24 indicate that this updated model performs well.
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(a) Experimental Results (b) Numerical Results

Figure 24: Comparison of Flandro’s Approximate Method to Experimental Data [45]

6.1 Stability Analysis
We use a relatively simple linear model for the acoustics to couple to the combustion model. It is using this
model we will predict the pressure response of the motor. The model we use for the acoustics is described
below.

By expanding the Euler equations to first order around the average pressure (p), we obtain the forced,
linear wave equation,

∇2p′ +
1

ā2

∂2p′

∂t2
= h (73)

n · ∇p′ = −f, (74)

where p′ is the perturbation in pressure, f and h are forcing terms characterized by velocity and heat flux
disturbances, respectively. Specifically,

f = −ρ̄ ∂u
′

∂t
· n̂ (75)

h = − 1

ā2

R

Cv

∂Q̇′

∂t
(76)

By restricting ourselves to one spatial dimension, and using the Galerkin expansion, we obtain an expression
for the pressure disturbance,

p′ = p

N∑
n=1

ηn (t)ψn (x) , (77)

where ψn (x) are the mode shapes for the geometry being considered. After substitution of Eq. 77 into
Eq. 74, we obtain a the following system of equation for the temporal modes,

η̈n + ω2
nηn = − ā2

pE2
n

[∫ (
− 1

ā2

R

Cv

∂Q̇′

∂t

)
ψndV +

∫∫ (
−ρ̄ ∂u

′

∂t
· n̂
)
ψndS

]
, (78)
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where E2
n =

∫
ψ2
n (x) dx. We consider our motor geometry to be a cylindrical tube that is closed at both

ends (this essentially amounts to assuming that the motor diameter is much larger than the throat diameter).
With this geometric information, we have,

ψn = cos
nπx

L
, (79)

E2
n =

1

2
ScL, (80)

where Sc is the cross-sectional area, and L is the motor length. We assume that the temporal modes take
the form,

ηn (t) = η̂ne
i(ω−iα)t. (81)

From this, we can show that,

ω = ωn +
1

2p

R

Cv
q0 sinφq −

γ

L
u0 sinφu, (82)

α =
1

2p

R

Cv
q0 cosφq −

γ

L
u0 cosφu, (83)

where φq = arg (Rp (ω)), φu = arg
(
Rp (ω)− 1

γ

)
, ωn is the nth natural mode of the motor. To determine

the expressions for q0 and u0, expressions for Q̇′ and u′p · n̂ were written as functions of Rp(ω):

Q̇′ = Rp(ω)ṁ
p′

p

CpTfAb
ScL

(84)

u′p · n̂ =

(
Rp(ω)− 1

γ

)
ṁ
p′

p

1

ρp
(85)

It is assumed that initially, p
′

p = 1. It follows that the the expressions for q0 and u0 are:

q0 = |Rp(ω)| ṁCpTfAb
ScL

(86)

u0 =

∣∣∣∣Rp(ω)− 1

γ

∣∣∣∣ ṁρp (87)

The effect of the nozzle and the flow turning on the stability of a solid rocket motor is significant. Rather
than explicitly model these effects, we include the data presented by Blomshield in our analysis as additional
terms that need to be included in our α calculation.

The stability tests were performed using a low smoke composite formulation (i.e. an AP/HTBP composite
propellant), and the growth rate for pressure perturbations are reported. That is, the α value corresponding
to p̂ = poe

αt are reported. A range of grain geometries were tested, but due to the nature of our acoustic
model, we restrict ourselves to the three cylindrical grain tests, with five pulse responses. A summary of the
test data is presented Table 11.

p [MPa] Web [cm] Pulse [kPa] α [s−1]
5.72 0.351 138 +232
4.21 0.406 248 +244
4.00 0.442 55 -185
4.00 0.902 28.0 <0
4.00 1.334 14 -71

Table 11: Test Data from Blomshield et al [28]

The pressure exponent is reported as 0.491, with a burn rate of 6.05mm/s at 6.9MPa. From this we
determine that the pre-exponential factor in the burn rate law is a = 2.344mm/s/MPa0.491. The geometry
of the solid motor is given in Fig. 25.
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Figure 25: Cylindrical Grain Solid Motor Geometry [28]

We calculate the gas properties in the combustion chamber assuming thermochemical equilibrium for
fixed enthalpy and pressure. The results for the chamber pressures used by Blomshield et al. are given in
Table 12.

Pressure [MPa] 3.45 6.9 10.34
Temperature [K] 2917 2957 2978
cp [kJ/kg/K] 3.382 3.082 2.925
γ [-] 1.161 1.165 1.168
Molecular Weight [kg/kmol] 26.12 26.22 26.27
Density [kg/m^3] 3.715 7.358 10.969
Speed of Sound [m/s] 1033 1041 1045

Table 12: Combustion Chamber Gas Properties

We use the first order acoustics model to calculate the pressure growth factor for each of the five pulse
responses:

p [MPa] Web [cm] Pulse [kPa] Pressure Growth Factor [s−1]
5.72 0.351 138 +33.76
4.21 0.406 248 +33.55
4.00 0.442 55 +34.89
4.00 0.902 28 +29.68
4.00 1.334 28 +25.96

Table 13: Calculated Pressure Growth Factors for Pulse Responses

The results from the first order acoustics model are given in Table 14 below. We can see that a linear
acoustics model is insufficient to recreate the experimental results. All cases are predicted to be stable, despite
stable and unstable experimental data. It is worth noting that Blomshield et al only provide comparisons
between stable cases and experimental data.

p [MPa] Web [cm] Numerical [s−1] Experiment ][s−1]
5.72 0.351 -217 +232
4.21 0.406 -206 +244
4.00 0.442 -198 -185
4.00 0.902 -165 <0
4.00 1.334 -156 -71

Table 14: Comparison of Numerical and Experimental Pressure Growth Factors

For completeness, a plot of the simulated pulse response utilizing the first order acoustics model is shown
in Figure 26 for a pressure of 4.00 MPa and a web of 1.334 cm. The envelope corresponding to the numerical
pressure growth factor of -156 is also included.
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Figure 26: Simulated Pulse Response for p = 4.00 MPa, Web = 1.334 cm

7 Conclusion
The following five combustion stability models from the literature were compared against the experimental
data of Blomshield et al [28]:

1. The qausi one-dimensional homogeneous (QSHOD) model [16]

2. The Zel’dovich-Novozhilov model [18]

3. The Zel’dovich-Novozhilov model with radiative heating correction [22]

4. The QSHOD model with surface layer time lag (QSHOD-τ) [25]

5. The Shusser-Culick model [27]

At lower pressures, the QSHOD-τ model performs best, predicting two peaks in the frequency response.
The lower frequency peak is at approximately the same frequency predicted by the surface response frequency
theory of Boggs and Beckstead [26]. This suggest that at lower pressures, the nature of the combustion
process changes such that the layers of AP particles present in the propellant result in a model that can be
excited. We hypothesize that this is because the pressure is sufficiently low that the AP particles no longer
form a melt layer.

At the intermediate (and particularly higher) pressures, the Zel’dovich-Novozhilov model with radiative
heating correction performs best. At these pressures, the large volume of combustion gases are at a sufficiently
high temperature that the radiation emitted is significant. The effect of the radiative heat-flux absorbed by
the propellant is significant and cannot be neglected.

The Zel’dovich-Novozhilov model consistently outperformed the QSHOD model. The primary difference
between these models is that the QSHOD model neglects the pressure dependence on the rate of decompo-
sition of the propellant, whereas the Zel’dovich-Novozhilov model includes a parameter to account for this
effect. Clearly, this pressure dependence is important, and cannot be ignored.

While the coefficients used to specify these models have some theoretical basis, they can only adequately
be determined by fitting to experimental data. To circumvent this issue, a new combustion response model
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was derived using the combustion model of Lengelle et al [29]. The purpose of this model was to be able
to predict the combustion response on APCP propellants using design level parameters such as AP mass
fraction. The model did not perform as hoped. The magnitudes of the responses were approximately correct,
but trends (such as in pressure) were not recovered by the model.

Finally, we used a linear acoustics model to couple the combustion response model and compared he
results to data from Blomshield et al. [28]. With a linear acoustics model, we were unable to determine if
the system would be stable or unstable - predicting stability for all cases looked at. However, for the stable
cases, we were able to recover the correct trend of pressure decay with propellant web.
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A Parameters for the Combustion Model of Lengelle et al
Parameter Definition Value

Ag,AP Arrhenius pre-exponential factor pre-mixed AP flame 650 g/cm3/sec/atm2

Ag,f Arrhenius pre-exponential factor for pre-mixed flame 650 g/cm3/sec/atm2

cp,g Specific heat capacity of combustion gases 0.3 cal/g/K
Dox Diameter of oxidizer particles Design input
Eg,AP Activation energy of pre-mixed AP flame reaction 15Kcal/mol
Eg,f Activation energy of pre-mixed flame reaction 29.4Kcal/mol

∆hD,AP Heat released per gram of AP degraded in liquid phase −375 cal/g
∆hH,AP Enthalpy per gram to heat AP to surface temperature 0.328Ts,AP − 8 [cal/g]
ṁAP Mass burn rate of AP Solved by model
ṁp Mass burn rate of propellant Solved by model
Qc Heat of pyrolyzation of propellant 0.328Ts,AP − 123 [cal/g]
Qc,b Heat of pyrolyzation of binder 675 cal/g
Qf Heat of combustion 700 cal/g
R Ideal gas constant 1.987 cal/mol/K

Tf Flame temperature for burning propellant αAPTf,AP + αBTs,b +
Qf
cg

Ts,AP Surface temperature of AP 925 K
Ts,b Surface temperature of binder 1100 K
αAP Mass fraction of AP in propellant Design input
λg Thermal conductivity of combustion gases 1.9× 10−4 cal/sec/cm/K
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B Parameters for the Stability Model
We start by finding the first order perturbation to the equations defining the model (Eq. 51 to Eq. 54). We obtain,

AT ′f,AP = BT ′s + Cs′ (88)

Es′ = FT ′f,AP +GT ′s +Hψ′ (89)

ψ′ = Ip′ + JT ′f,AP +KT ′s (90)

m′AP = Lp′ +MT ′f,AP +NT ′s. (91)

Where A through N are as follows.

A = cg −
1− αap
1− αaps

s
Qc,b
Qc

(
1 +

cg (Tf,AP − Ts,AP )

Qc

)s−1

(92)

B =
1− αAP
1− αAP s

cp,gs
2 (Ts − T0)

(
−0.328

cp,g (Tf,AP − Ts)
(Qc)

2 − cp,g
Qc

)(
cp,g (Tf,AP − Ts)

Qc
+ 1

)s−1

+
1− αAP
1− αAP s

cp,gs

(
cp,g (Tf,AP − Ts)

Qc
+ 1

)s
− cp,g (93)

C = Qc,b
1− αAP
1− αAP s

[
1 +

Qc,b
Qc

]s
+Qc,b

1− αAP
(1− αAP s)2αAP s

[
1 +

cp,g (Tf,AP − Ts)
Qc

]s
+Qc,b

1− αAP
1− αAP s

[
1 +

cp,g (Tf,AP − Ts)
Qc

]s
log

[
1 +

cp,g (Tf,AP − Ts)
Qc

]
(94)

E = 1− αAP e
Ef,AP
RTf,AP

2 log
[
1 +

cp,g(Tf,AP−Ts)
Qc

]
(αAP s− 1)

√√√√√ e

Ef,AP
RTf,AP

Ag,AP

log
Qf
Qc

1−αAP s
1−αAP

log

[
1+

cp,g(Tf,AP−Ts)
Qc

]
(95)

F =
1

√
ψ

√√√√√ e

Ef,AP
RTf,AP

Ag,AP

log
Qf
Qc

1−αAP s
1−αAP

log
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cp,g(Tf,AP−Ts)
Qc

]

×

e Eg,AP
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cp,g (Tf,AP − Ts)
Qc

log
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1−αAP s
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1 +
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Qc

]
log2 1 +

cp,g(Tf,AP−Ts)
Qc

− Eg,AP
RT 2

f,A

e
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RTf,AP Ag,AP

log
Qf
Qc

1−αAP s
1−αAP[

1 +
cp,g(Tf,AP−Ts)

Qc

]
log2 1 +

cp,g(Tf,AP−Ts)
Qc

 (96)
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G =
1

√
ψ

√√√√√ e

Ef,AP
RTf,AP

Ag,AP

log
Qf
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1−αAP

log
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H =
1

ψ3/2
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I =
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4Adκg
Doxp (99)

J = αAP
e
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RTf
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(100)
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Using these, we define,

CBs,B =
(B(F +HJ +HI(s̄− 1)) +A(G+HK +HI(x̄− 1)))

XB
(105)

CBs,p =
B(−HJL(s̄− 1)− FL(s̄− 1)) +A(−HKL(s̄− 1)−GL(s̄− 1))

XB
(106)

CBTs,B =
−C(F +HJ) +AE

XB
(107)
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CBTs,p =
−C(−HJL(s̄− 1)− FL(s̄− 1) +HIM(s̄− 1)) +A(−HImAP + E(s̄− 1))

XB
(108)

XB = B(F +HJ)mAPA(GmAP +HKmAP + EN(s̄− 1)) +BEM(s̄− 1) + C(GM +HKM = FN +HJN)(s̄− 1) (109)
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XAP = BEM +AEN + C(GM +HKM − FN −HJN) (116)

We also define the derivatives of the heat-flux terms,
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B( s−1
s )

2
cpg,D

2
ox

8Adλg

(
1− m2

B (s− 1)
2
cp,gD

2
ox

4s2Adλg

)
(118)

∂qAP
∂mAP

= Qfs

(
1 +

cp,g (Tf,AP − Ts,AP )

Qc

)(
1− s2cp,gD

2
ox

4Adlambdag

)
e
−m

2
AP cp,gD

2
ox

8Adλg (119)

∂qAP
∂s

= QfmAP

(
1 +

cp,g (Tf,AP − Ts,AP )

Qc

)(
1− s2cp,gD

2
ox

4Adlambdag

)
e
−m

2
AP cp,gD

2
ox

8Adλg (120)

∂qAP
∂Tf,AP

=
cp,gmAPQfs

Qc
e
−m

2
AP cp,gD

2
ox

8Adλg (121)

∂qAP
∂Ts,AP

= mAPQfse
−m

2
AP cp,gD

2
ox

8Adλg

(
0.328

cp,g (Tf,AP − Ts,AP )

Q2
c −

cp,g
Qc

)
(122)

Combined with the parameters outlined in appendix A, this completes specification of our stability model.
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